
 1

A MODULAR, SCALABLE, ARCHITECTURE FOR
UNMANNED VEHICLES

David G. Armstrong II, Carl D. Crane III, David Novick, Jeffrey Wit
Center for Intelligent Machines and Robotics

University of Florida, Gainesville, Florida 32611, USA
352-392-0814, 352-392-1071 (fax)

ccrane@ufl.edu, http://www.me.ufl.edu/CIMAR

Ralph English
Wintec, Inc.

Ft. Walton Beach, Florida

Phillip Adsit
Applied Research Associates

Tyndall Air Force Base, Florida

Cpt. David Shahady
Air Force Research Laboratory
Tyndall Air Force Base, Florida

ABSTRACT : A modular, scalable architecture for use on unmanned vehicles has been
developed at the Center for Intelligent Machines and Robotics under the direction of the
Air Force Research Laboratory at Tyndall Air Force Base, FL. This state of the art
architecture isolates five functionally cohesive sub-tasks into self-contained modules with
well defined interfaces. The architecture consists of a Mobility Control Unit (MCU),
Path Planner (PLN), Position System (POS), Detection and Mapping System (DMS), and
a Primitive Driver (PD). The design considerations for the development of this
architecture included sub-system modularity, implementation independent software
interfaces, ability to expand system functionality through continued addition of modules
(scale), and the goal of moving toward a standard architecture for autonomous systems.
The focus of this paper is to present a modular architecture that addresses the above
design considerations.

One particularly noteworthy aspect of the architecture is the use of propulsive and
resistive wrench commands that are communicated to the Primitive Driver component to
specify desired vehicle motion. The advantage of this approach is that a standard
command can be used to communicate with a wide variety of vehicles such as steered-
wheeled, tracked, or omni-directional. It is not necessary to have vehicle specific
commands included in the architecture such as ‘steering wheel angle’, ‘throttle position’,
‘left-track velocity’, and ‘right-track velocity’. Without the use of the propulsive and
resistive wrench commands, the number of needed commands was potentially limitless
with only a small subset of commands actually be applicable to a particular vehicle.

The architecture has been validated by implementing it on three mobile platforms, i.e. a
steered wheel vehicle, a tracked vehicle, and an omni-directional indoor vehicle. Several
features of this work have been incorporated in the architecture that is being adopted by
the Joint Architecture for Unmanned Ground Systems (JAUGS) Working Group.

Keywords: Architectures, Autonomous Vehicles, Navigation, Modular, Intelligent

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
A Modular, Scalable, Architecture for Unmanned Vehicles

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center for Intelligent Machines and Robotics,Department of Mechanical
Engineering,University of Florida,Gainesville,FL,32611

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

1. INTRODUCTION

The Center for Intelligent Machines and Robotics (CIMAR), at the University of Florida,

has worked to develop a series of autonomously navigating vehicles. This work has been

sponsored by the Air Force Research Laboratory at

Tyndall Air Force Base, Florida. A Kawasaki Mule

500 all-terrain vehicle, named the Navigation Test

Vehicle, was first modified for computer control in

1991 for the purpose of providing a test and

development platform (see figure 1.). The

technology developed on this platform has since

been applied to several vehicles including heavy

construction equipment.

The original vehicle control architecture was primarily based on a shared memory

(blackboard) approach, implemented through the use of multiple 68030 CPU boards running on a

VME backplane. The use of shared memory provided the advantage of running critical real-time

procedures in parallel and having their resultant data available to all other programs immediately

via the VME backplane. This is the key advantage of using shared memory.

The problem with shared memory is that it tightly couples all of the sub-systems in an

indirect way making programming errors in the system difficult to trace. The shared or common

memory area becomes unmanageable in that a piece of data can be over written in error with

impact somewhere else in the system. The result is a system that becomes difficult to maintain

or upgrade as new features and hardware are added. In addition, the integration of all the

systems into one backplane makes it difficult to use any one sub-system on a different project.

For example to apply the position system to another autonomous vehicle would most certainty

require significant changes to both hardware and software.

Figure 1: Navigation Test Vehicle

 3

From the experience gathered over the past years of work, a list of four architecture

design requirements has emerged. The architecture should:

1. be comprised of a set of well defined, self contained sub-modules

2. exhibit implementation independent well defined software interfaces

3. have the ability to scale up a system’s functionality with different combinations of modules

4. provide a stepping stone toward the development of a standard architecture

The focus of this paper is to present a state-of-the-art modular architecture which addresses the

above design considerations.

2. ARCHITECTURE

The task of autonomous navigation can be broken down into five sub-tasks as follows:

 1. Vehicle positioning

 2. Vehicle Specific Actuator Control

 3. Path Planning

 4. Perception of the Environment

 5. Path Execution and Obstacle Avoidance

The proposed architecture isolates these five, functionally cohesive, sub-tasks into self contained

modules with well defined interfaces. The architecture, depicted in Figure 2, consists of a

Position System (POS), Primitive Driver (PD), Path Planner (PLN), Detection and Mapping

System (DMS), and an Autonomous Control Unit (ACU).

The most important part of defining an architecture is specifying the messaging or

interfaces between componets. The interface defines what information goes in and what

information comes out, thereby indirectly specifying the function of the component. It is

important to note that the interface does not and should not specify how the function is carried

out. This allows the designer to be flexible in the choice of the hardware and software to best

suit the module’s functions. This paper will now proceed with a brief discussion of each

component including its function and the associated software interface.

 4

2.1 Position System (POS)

The function of this module is to provide position and orientation data to the Autonomous

Control Unit. The position system, like all of the modules, exists as a stand alone, self-contained

unit. The interface has been developed in a generic manner (independent of its implementation)

so that when new technology becomes available it can be plugged in without changing the host

system’s software.

The contents of the position message consist of a set of generic parameters including

latitude, longitude, elevation, roll, pitch, and yaw. These parameters are sufficient to completely

describe the vehicle’s pose. Just as important however, is the absence of any implementation

specific data such as GPS or INS specific parameters that would only be useful for a system that

was based on that type of implementation. It is also important to note that the position system

interface reports the position data in only one single format. Since the global coordinates are

sufficient to describe any possible vehicle pose it is not necessary to support a separate set of

pose data to describe a relative position. Providing for more than one form of data output from

any given module can lead to exponential complexity as data flows upward and outward

throughout the system.

Host
Communication

Auton. Control Unit

Path
Planner

Position
System

Detection &
Mapping
System

Primitive
Driver

Figure 2: Modular and Scalable Architecture

 5

One example of a position system that has been implemented includes an inertial

navigation system (INS) and a differential global position system (DGPS). The INS offers

position data at a 10Hz rate but tends to drift over time. The DGPS provides position data

without drift but only at a 1Hz rate and is subject to availability of the orbiting satellites.

Through the application of a Kalman Filter, the system is able to maintain accuracies equal to

that of the DGPS and an output rate of 10Hz while smoothing through temporary loss of DGPS

signals (see Wit, et al., 1996). An average position accuracy of 6cm is obtained with a standard

deviation of 3cm. A summary of the messaging interface for the Position System is listed in

Table 1.

2.2 Primitive Driver (PD)

The Primitive Driver accepts higher level commands from the Autonomous Control Unit

that describe how the vehicle is to move. It then translates these commands into the low-level

commands that directly control the vehicle actuators to achieve the desired motion. Only those

vehicle actuators that are directly related to vehicle mobility are controlled by the Primitive

Driver. A summary of the messaging interface for the Primitive Driver is listed in Table 2.

A significant feature of the Primitive Driver system is the fact that mobility commands

are specified by only two wrench commands, i.e. a propulsive wrench and resistive wrench. The

propulsive wrench specifies how the vehicle should move while the resistive wrench specifies

how the vehicle should act to impede movement.

Figure 3 shows a vehicle with a coordinate system attached. In this example the X axis is

in the forward direction of travel, the Z axis is downward, and the Y axis is defined based on a

right handed coordinate system. It is assumed that the origin of this coordinate system is located

at the vehicle center of mass. It is important to point out however that exact location of the

center of mass of the vehicle will not be required.

 6

The six coordinates of the propulsive wrench can be written as

 Òp = {fpx, fpy, fpz ; mpx, mpy, mpz} (1)

while the six coordinates of the resistive wrench can be written as

 Òr = {f rx, fry, frz ; mrx, mry, mrz} . (2)

Since the reference point is assumed to be located

at the vehicle center of mass, the force

components of the propulsive wrench specify a

net force that is to be applied to the vehicle in

order to cause it to translate. The moment

components specify a net moment that will cause

the vehicle to rotate or change orientation. For

the resistive wrench, the force and moment

components specify how the vehicle is to act to

resist motion. When a vehicle system receives

the propulsive and resistive wrench commands, the vehicle actuators must act in a way as to

apply appropriate translational and rotational propulsion or resistance. This approach represents

a general means of implementing vehicle control commands.

The significant feature of this approach is to avoid having to have different motion

commands for different vehicles, such as steering and throttle commands for a steered-wheeled

vehicle, and left track / right track commands for a tracked vehicle. Without a generic definition

for desired motion it would be necessary for the the architecture to have a plethora of vehicle

commands such as ‘desired steering wheel position’, ‘desired throttle position’, ‘desired left

track velocity’, ‘desired right track velocity’, and ‘desired brake setting’ to name a few. The

number of commands that would have to be included in the architecture documentation

potentially was limitless since new commands would have to be added for each new mobility

z

x y

Figure 3: Vehicle Coordinate System

 7

concept. Only a small number of these commands would be relevant to any one particular

vehicle.

2.3 Path Planner (PLN)

The function of this module is to obtain a sequence of via-points or sub-goals (See Jarvis,

1983; Rankin, et al., 1996). These sub-goals will direct the robot from a specified start pose to a

specified goal pose in a manner as to avoid collision with all known obstacles while minimizing

the total distance traveled. A summary of the messaging interface for the planner is listed in

Table 3.

2.4 Detection and Mapping System (DMS)

The Detection and Mapping System, like the others, is developed as a stand alone plug-in

module with a hardware independent interface. The function of this module is to build and

maintain a representation of the environment (Area Map) and to make information contained in

the Area Map available to the host. The DMS report consists of changes to the Area Map.

When the DMS is given a request Area Map, it responds with a message that includes every

change to the Area Map since the specified time. If the time is given as zero, then the DMS will

transmit the entire Area Map. After the first report is sent, the DMS will continue to send Area

Map reports at the rate specified in the Request Area Map message. The Area Maps that are sent

after the first one consist only of updates since the last report (includes obstacles added or

deleted).

The DMS that has been implemented combines data from both ultrasonic and stereo

vision sensors. An array of 24 ultrasonic transducers has been utilized to provide range data up

to 7 meters at approximately 3Hz. In addition, an obstacle detection system based on stereo

vision (a system built by the NASA Jet Propulsion Laboratory) has been used to provide data at

longer ranges (up to 30) meters at approximately 2Hz (see Matthies, et al., 1996). Data from

 8

both obstacle detection systems are fused together and shipped out to the host system in the form

of an Area Map. A summary of the messaging interface for the DMS is listed in Table 4.

2.5 Autonomous Control Unit (ACU)

The Autonomous Control Unit (ACU) can be thought of as the integrator of the sub-

modules and is the higher order agent that achieves mobility. The function of the ACU is to

respond to high-level commands from the host (typically an Operator Control Unit) and

coordinate the sub-modules to achieve autonomous path execution. This includes communi-

cation with all sub-modules and moving the vehicle along the planned path while avoiding both

expected and unexpected obstacles. The sub-tasks of the ACU include the following:

 - Process commands from the host

 - Read input from the Position Module and the Detection and Mapping System

 - Request the Path Planner to plan a path to the goal

 - Maintain the current sub-goal in following the path

 - Perform path execution based on combined proportional/integral (PI) and pure
pursuit control methods

 - Perform reflexive obstacle avoidance based on the Area Map provided in real time
from the DMS

 - Perform path re-planning (using the Planner Module) to avoid “long range” obstacles

 - Output the propulsive and resistive wrench commands to the Primitive Driver
module

A summary of the messaging interface for the Autonomous Control Unit is listed in Table 5.

3. IMPLEMENTATION AND CONCLUSIONS

A modular, scalable architecture has been presented. This architecture has been

implemented on the Navigation Test Vehicle shown in Figure 4 as well as the All-Purpose

Remote Transport System (ARTS) and a Cybermotion omni-directional robot shown in Figures 5

and 6. The experience of applying the modular architecture to the ARTS demonstrated the

 9

advantages of the modular approach. Two teams of developers were able to implement

autonomous navigation of the ARTS in a period of six weeks from the start of the project. One

group at Tyndall Air Force Base designed and implemented the Primitive Driver component on

the ARTS so that the system would respond appropriately to propulsive and resistive wrench

commands. The second group assembled ACU and POS modules that were duplicates of the

Figure 6: Cybermotion Robot

Figure 4: Navigation Test Vehicle with Modular System Installed

Figure 5: NTV and ARTS Autonomous
Vehicles

 10

same modules running on the NTV. When the duplicate modules were installed on the ARTS,

the team was able to effect autonomous navigation within twenty minutes. Only one software

modification had to be made during the integration process. This was to improve the path

tracking accuracy of the ARTS by changing control tuning parameters on the ACU that govern

how the propulsive and wrench commands are generated in response to path tracking errors

This implementation serves to demonstrate the advantages and flexibility of a modular

hardware architecture that is integrated via a standard messaging protocol. This approach will

allow new hardware and sensor systems to be added to any autonomous vehicle so that it may be

configured and made operational in a minimal amount of time.

4. REFERENCES

Jarvis, R.A., “Growing Polyhedral Obstacles for Planning Collision-Free Paths,” The
Australian Computer Journal, 15(3), 1983, pp. 103-111.

Rankin, A., and Crane, C., “Multi-Purpose Off-Line Path Planning Based on an A*
Search Algorithm,”Proceedings of the 1996 ASME Mechanisms Conference, Irvine, Ca.,
Published on CD-ROM.

Wit, J.S., Crane, C.D., Armstrong, D.G., “Evaluation of an Integrated Inertial Navigation
System and Global Positioning System Under Less Than Optimal Conditions,” Proceedings of
the Sixth International Symposium on Robotics and Manufacturing (ISRAM ‘96), Volume 6,
ASME Press, Montpellier, France, May 1996, pp. 649-654.

Matthies, L., Brown, E.. "Machine Vision for Obstacle Detection and Ordnance
Recognition," Annual meeting of the Association for Unmanned Vehicle Systems (AUVSI'96),
Orlando, FL, July 1996.

5. ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge the support and encouragement of

personnel of the Air Force Research Laboratory at Tyndall Air Force Base, Florida.

 11

Table 1: Position System Messaging Interface

Input Commands
Reinitialize: Commands the Position System to reinitialize each sub-system in the proper sequence to

bring the system up to a state of readiness. The Position System must be initialized for the
Position Message to be valid (with the exception of the two status bytes which are always
valid).

 Standby: Commands the Position System to place each of its sub-systems in a state where they are

ready to be initialized.

 Set Config.: This command is used to set the configuration of the Position System

 Shutdown: Commands each of the sub-systems to shutdown in the proper sequence.

Input Request
 Request Position
 Request Status
 Request Configuration

Output Messages
 Position: Latitude Theta X Velocity X Omega X Time Stamp
 Longitude Theta Y Velocity Y Omega Y Status Bytes
 Elevation Theta Z Velocity Z Omega Z Data Validity
 Position RMS Attitude RMS Velocity RMS Omega RMS

 Status: Startup: Indicates the system has just been powered up
 Busy: Indicates the system is currently processing the last command
 Standby: Indicates the following statements apply:
 - The system is ready to be reinitialize
 - The Position Message is not valid (with the exception of the two status
 bytes that are always valid)
 Ready: Indicates that the system is initialized and is operational
 Problem: Indicates that a self-correcting problem has occurred and the problem is
 being corrected internally. This problem requires no input from the host
 Error: Indicates that a problem has occurred that the system could not resolve. An

error requires the intervention of the host to be resolved.
 Failure: Indicates that the system has failed and will not recover.

 Note: Each of the five modules uses this same status layout

 Configuration: Text Description of the system & component identification
 Reference Latitude, Longitude, and Elevation

 12

Table 2: Primitive Driver Messaging Interface

Input Commands
Reinitialize: Commands the Primitive Driver to reinitialize each sub-system in the proper sequence to

bring the system up to a state of readiness. Once initialized, the Primitive Driver will
respond to commands that cause or resist vehicle motion. The Primitive Driver must be
initialized for vehicle motion to occur.

 Standby: Commands the Primitive Driver to place each of its sub-systems in a state where they are

ready to be initialized.

Propulsive This command, along with the Resistive Wrench Command, tells the vehicle how to
 Wrench move. A wrench is Force-Moment vector made up of six components as shown below:
 % Force X % Moment X
 % Force Y % Moment Y
 % Force Z % Moment Z

The propulsive Wrench is applied to the center of mass point of the vehicle and is used
to propel the vehicle. The force component of the wrench acts to translate the vehicle
while the moment component acts to rotate the vehicle. Essentially we are telling the
Primitive Driver how we want to push on the vehicle were the percentage indicates the
magnitude of the push. For example: if the vehicle were a car, then the Primitive Driver
would map a 50% Force X to the throttle and transmission (50% throttle and
transmission in drive) and Moment Z would map directly to the steering. The remaining
parameters would not be used.

 Resistive This command is similar to the Propulsive Wrench however the Resistive Wrench acts
 Wrench to impede vehicle motion. The resistive Wrench uses the same six parameters as the

Propulsive Wrench. For example, if the vehicle were a car, then the a 20% Force X
command would map directly to the brake (brake depressed 20%).

 Shutdown: Commands each of the sub-systems to shutdown in the proper sequence.

Input Request
 Request Status
 Request Config.

Output Messages
 Status: Startup: Indicates the system has just been powered up
 Busy: Indicates the system is currently processing the last command
 Standby: Indicates the following statements apply:
 - The system is ready to be reinitialize
 - The system will not respond to commands that cause or resist motion
 - The vehicle should remain stationary
 - The vehicle actuators should not move
 - From a mobility standpoint, the vehicle should be considered safe
 Ready: Indicates that the system is initialized and is operational
 Problem: Indicates that a self-correcting problem has occurred and the problem is
 being corrected internally. This problem requires no input from the host
 Error: Indicates that a problem has occurred that the system could not resolve. An

error requires the intervention of the host to be resolved.
 Failure: Indicates that the system has failed and will not recover.
 Configuration: Text Description of the system & component identification
 Vehicle Length Max Speed X Max Speed -X Max Omega X
 Vehicle Width Max Speed Y Max Speed -Y Max Omega Y
 Vehicle Height Max Speed Z Max Speed -Z Max Omega Z
 Turning Radius Max Theta X Max Theta Y

 13

Table 3: Path Planner Messaging Interface

Input Commands
Reinitialize: Commands the Path Planner to reinitialize to bring the system up to a state of readiness.

This may include updating the systems map database and performing some
preprocessing of that information.

 Set Config.: This command is used to set the configuration of the Path Planner.

 Shutdown: Commands each of the sub-systems to shutdown in the proper sequence.

Input Request
 Request Path This request would include such information such as the start and goal positions if a “go-

to-goal” plan is desired or the corner points of a bounded area if a “sweep plan” is
desired. In either case the latitude, longitude, elevation, roll, pitch, and yaw of each
point would be specified.

 Request Status
 Request Config.

Output Messages
 Planned Path: Includes the latitude, longitude, elevation, roll, pitch, and yaw of each point in the path

In addition, information such as the path type, path length, number of sub-goals, and
path status are reported.

 Status: Startup: Indicates the system has just been powered up
 Busy: Indicates the system is currently processing the last command
 Standby: Indicates the system is ready to be reinitialized
 Ready: Indicates that the system is initialized and is operational
 Problem: Indicates that a self-correcting problem has occurred and the problem is
 being corrected internally. This problem requires no input from the host
 Error: Indicates that a problem has occurred that the system could not resolve. An

error requires the intervention of the host to be resolved.
 Failure: Indicates that the system has failed and will not recover.

 Configuration: Includes a text description of the system as well as the vehicle length, width, height, and

turning radius.

The Path Planner system may also request a World Modeling System Area Map Report as defined by the World
Modeling System.

 14

Table 4: Detection and Mapping System Messaging Interface

Input Commands
Reinitialize: Commands the DMS to reinitialize each sub-system in the proper sequence to bring the

system up to a state of readiness. Once initialized, the DMS will respond to request for
the Area Map.

 Standby: Commands the Detection and Mapping System to place each of its sub-systems in a state

where they are ready to be initialized.

 Shutdown: Commands each of the sub-systems to shutdown in the proper sequence.

Input Request
 Request Area Map
 Request Status
 Request Config.

Output Messages
 Area Map This message would include the number of obstacles, addition or deletion, ID#,

confidence, time stamp, classification (tree), type (oak), class & type confidence, and the
vertices of each obstacle in global coordinates.

 Status: Startup: Indicates the system has just been powered up
 Busy: Indicates the system is currently processing the last command
 Standby: Indicates the system is ready to be reinitialized
 Ready: Indicates that the system is initialized and is operational
 Problem: Indicates that a self-correcting problem has occurred and the problem is
 being corrected internally. This problem requires no input from the host
 Error: Indicates that a problem has occurred that the system could not resolve. An

error requires the intervention of the host to be resolved.
 Failure: Indicates that the system has failed and will not recover.

 Configuration: Text Description of the system & component identification

The Detection and Mapping System may also request a Position Message as defined by the Position System. The
DMS would use this information to report all Map coordinates in a global sense.

 15

Table 5: Autonomous Control Unit Messaging Interface

Input Commands
 General: All of the input and output messages from the other systems may pass through the ACU.

For example, the host may request a position message from the ACU. The ACU would
then forward this message to the Position System and subsequently forward the Position
Message back to the host.

Reinitialize: Commands the ACU to reinitialize itself to bring the system up to a state of readiness.

The ACU will also verify that the Position System, Path Planner, Primitive Driver, and
World Modeling System are all properly initialized.

 Standby: Commands the ACU to place all of its sub-systems in a state where they are ready to be

initialized. A standby command will be sent to the Position System, Path Planner,
Primitive Driver, and World Modeling System.

 Execute Path: Commands the ACU to begin moving along the planned path. The planned path is either

sent with this message or the currently loaded path is used.

 Pause: Commands the vehicle to stop path execution. The ACU’s sub-systems will remain in

the active (ready) state so that path execution can continue immediately upon receipt of
the ACU’s continue message. If a more secure, stopped, state is desired than the
Standby message should be used as this will place all of the ACU’s sub-systems in a safe
(Standby) mode.

 Continue: Continues path execution from the point that it had previously left off.

 Set Mode: Sets the mode of operation such as safe, autonomous, teleop, or teach mode.

 Shutdown: Commands each of the sub-systems to shutdown in the proper sequence.

Output Messages
 Startup: Indicates the system has just been powered up
 Busy: Indicates the system is currently processing the last command
 Standby: Indicates the system is ready to be reinitialize
 Ready: Indicates that the system is initialized and is operational
 Problem: Indicates that a self-correcting problem has occurred and the problem is being

corrected internally. This problem requires no input from the host
 Error: Indicates that a problem has occurred that the system could not resolve. An

error requires the intervention of the host to be resolved.
 Failure: Indicates that the system has failed and will not recover.

